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Abstract

In this paper, characteristics of the interface crack-tip stress and electric displacement fields in transversely isotropic

piezoelectric bimaterials are studied. The authors have proven, within the framework of the generalized Stroh for-

malism for piezoelectric bimaterials, that there is no coexistence of the parameters e (oscillating) and j (non-oscillating)

in the interface crack-tip generalized stress field for all transversely isotropic piezoelectric bimaterials. This leads to the

classification of piezoelectric bimaterials into one group that exhibits the oscillating property in the interface crack-tip

generalized stress field and the other that does not. Fifteen (15) pair-combinations of six (6) piezoelectric materials PZT-

4, PZT-5H, PZT-6B, PZT-7A, P-7, and BaTiO3, which are commonly used in practice, are numerically analyzed in this

study, and the results backup the above theoretical conclusions. Moreover, the associated eigenvectors for such material

systems (with either e ¼ 0 or j ¼ 0) are also obtained numerically, and the result show that there still exist four linear

independent associate eigenvectors for each bimaterial.

� 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

For piezoelectric materials, it has been shown by Suo et al. (1992) that the crack-tip stress and electric

displacement field singularity at the bimaterial interface has a characteristic of r�1=2þic, where c takes four
eigenvalues: two are real (c1;2 ¼ �e) and two are imaginary (c3;4 ¼ �ij). Thus the fracture behavior of the
interfacial crack in such a bimaterial system is governed by two numbers, e and j, with e controlling its
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oscillatory singularity and j modifying its non-oscillatory singularity, as oppose to that (r�1=2) of the crack

in a monolithic homogeneous material. In the treatment by Suo et al. (1992), both non-zero values of e
and j were assumed and hence four linearly independent eigenvectors would be obtained, associated

with the four eigenvalues, for an impermeable interface crack in a piezoelectric bimaterial. Other re-
searchers, for example, Boem and Atluri (1996) and Ma and Chen (2001), have extended the work on

similar basis.

A reduced class from the generalized piezoelectric bimaterials is the class of transversely isotropic piezo-

electric bimaterials, which has more practical significance, because almost all piezoelectric materials that

are in use today fall into this category. The crack-tip singular field characteristics, in regard to the existence

of (non-zero) e and j, have not been studied in sufficient detail for this class of materials. Up to date,

particularly, none of e and j values for practical piezoelectric materials have been reported in the literature.

There have been some discussions for the condition where the crack front coincides with the poling axis
(Deng and Meguid, 1999a,b; Wang and Zhong, 2002). In this case, the problem can be decoupled into: (a)

an in-plane problem and (b) an anti-plane problem, the latter problem has been studied by Deng and

Meguid (1999a,b) and they found that the mode-III stress and electric fields exhibit the traditional inverse

square root singularity in any transversely isotropic piezoelectric bimaterials. However, the more important

case where the crack is perpendicular to the poling axis has not been discussed in sufficient detail. The

question of how the piezoelectric poling effect is affected by the existence of an impermeable crack is of most

engineering concern, which is the focus of this study.

The evaluation of e and j is based on the material matrix H, as proposed by Suo et al. (1992), which is
constructed by solving the following eigenvalue problem for the material:
½Qþ pðRþ RTÞ þ p2T�a ¼ 0;
according to Stroh�s formulism (Stroh, 1958; Ting, 1986, 1990; Suo, 1990) for piezoelectric materials (Suo

et al., 1992; Boem and Atluri, 1996, Deng and Meguid, 1998; Ma and Chen, 2001), where Q, R, and T are

material matrices constructed with the material�s elastic constants, piezoelectric constants and dielectric

constants (see Section 2 for detail).

In this paper, we find, by showing that the determinant of the imaginary part of H always vanishes for
any given transversely isotropic piezoelectric bimaterial system, that e and j cannot be both non-zero, that

is, either the condition e ¼ 0 or j ¼ 0 must exist in such a material system. This theoretical conclusion is

then validated by evaluations for practical piezoelectric materials such as PZT-4, PZT-5H, BaTiO3, PZT-

6B, PZT-7A and P-7. This theoretical finding has two significant implications: (I) non-oscillating stress

singularity may exist at the interfacial crack-tip in some transversely isotropic piezoelectric bimaterials,

while in some others with j ¼ 0 and e 6¼ 0 oscillating crack-tip stress field prevails; (II) the non-coexistence

condition for e and j creates a special case where some eigenvectors are associated with eigenvalues of zero.

The first implication (I) can be used to classify piezoelectric materials in the study of their fracture be-
haviors. The second implication (II) still needs further theoretical investigation, which is the subject of

another treatment underway. Numerical results for some practical piezoelectric bimaterials are given in this

paper to show that there still exist four linear independent associate eigenvectors with such values of e and
j. Since most of the practical piezoelectric materials are transversely isotropic materials in nature, it also

renders practical importance to consider the above two implications.

To help the readers to follow the theoretical derivation and reach the conclusion, the basic Stroh

formulism and the solution given by Suo et al. (1992) are briefly described in Section 2, and then in Section

3, the explicit solution of the eigenvalues for transversely isotropic piezoelectric materials is obtained, in
which the determinant of the imaginary part ofH always vanishes for all transversely isotropic piezoelectric

bimaterials. The values of e and j for some piezoelectric bimaterials are given to support the theoretical

finding.
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2. The basic formula

The generalized displacements, u (displacements ui and the electric potential /), and stresses, r (stresses

ri2 and the resultant force D2), in-plane problems of linear piezoelectric materials can be expressed in terms
of the four-dimensional Stroh formalism as follows (Suo et al., 1992; Boem and Atluri, 1996; Deng and

Meguid, 1998; Ma and Chen, 2001):
u ¼ 2Re½AfðzÞ�; ½ri2� ¼ 2Re½Bf 0ðzÞ�; ð1Þ
where
u ¼ ðu1; u2; u3;/ÞT; ½ri2� ¼ ðr12; r22; r32;D2ÞT; ð2Þ
and fðzÞ is a column of four complex potential functions, as
fðzÞ ¼ ðf1ðz1Þ; f2ðz2Þ; f3ðz3Þ; f4ðz4ÞÞT;
za ¼ x1 þ pax2 ða ¼ 1; 2; 3; 4Þ;

ð3Þ
where pa are the eigenvalues with positive imaginary parts of the following material�s characteristic

equation (equilibrium condition):
½Qþ pðRþ RTÞ þ p2T�a ¼ 0; ð4Þ
with the material matrices Q, R, T constructed as
Q ¼ ci1k1 e1i1
eT1k1 �v11

� �
; R ¼ ci1k2 e2i1

eT1k2 �v12

� �
; T ¼ ci2k2 e2i2

eT2k2 �v22

� �
; ð5Þ
where cijkl, ekij, and vik denote the elasticity constants, the piezoelectric constants and the dielectric con-

stants, respectively.

Then, matrices A and B can be constructed with the corresponding eigenvectors, as
A ¼ ða1; a2; a3; a4Þ; B ¼ ðb1; b2; b3; b4Þ; ð6Þ

bj ¼ ðRT þ pjTÞaj ¼ �ð1=pjÞðQþ pjRÞaj ðj ¼ 1; 2; 3; 4Þ: ð7Þ
As can be seen from Eqs. (1)–(7), the electric potential and the electric displacement have been brought

into the formulation as components of the generalized displacement and generalized stress, respectively,

extending the formalism to a four-dimension problem. The formalism compacts the elastic–piezoelectric

interactions nicely into a unified formalism that is consistent with the treatment of anisotropic elasticity,

which makes the problem solving manipulations easier as shown in the following.

When an impermeable crack exist at the interface between two piezoelectric materials, two Hermitian

matrices, Y and H, can be defined for the problem, as (Suo et al., 1992)
Y ¼ iAB�1; H ¼ Y1 þ Y2; ð8Þ
where the subscripts ‘‘1’’ and ‘‘2’’ denotes the different materials.

By satisfying the continuity conditions of the generalized displacement and traction at the interface, a

column vector function hðzÞ can be defined, as (Suo et al., 1992)
hðzÞ ¼ B1f
0
1ðzÞ y > 0;

H�1HB2f
0
2ðzÞ y < 0;

�
ð9Þ
which is analytic in the whole plane except on the cracking line. Once hðzÞ is found, the whole problem is

solved.
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Using the above notions, the condition of stress free and electric displacement free on the crack surface

yields a homogeneous Hilbert problem as expressed in the following form:
hþðxÞ þH
�1
Hh�ðxÞ ¼ 0: ð10Þ
Assuming that the function hðzÞ takes the form:
hðzÞ ¼ wz�1=2þic; ð11Þ
where w is a four-element column vector and c an arbitrary number, both to be determined, Eq. (10) turns

into the following eigenvalue problem:
Hw ¼ e2pcHw: ð12Þ
Separating the matrix H into a real part D and an imaginary W, as
H ¼ Dþ iW: ð13Þ
Eq. (12) leads to
kD�1Wþ ibIk ¼ b4 þ 2bb2 þ c ¼ 0; ð14Þ
where
c ¼ � 1

p
tanh�1ðbÞ; b ¼ 1

4
tr½ðD�1WÞ2�; c ¼ kD�1Wk: ð15Þ
b is the root of Eq. (14) and hence c may take four distinct values �e, and �ij as obtained by Suo et al.

(1992) and Boem and Atluri (1996) for a general case,
e ¼ 1

p
tanh�1½ðb2 � cÞ1=2 � b�1=2; j ¼ 1

p
tanh�1½ðb2 � cÞ1=2 þ b�1=2: ð16Þ
With the four distinct (non-zero) eigenvalues, four associated linearly independent eigenvectors w1, w1, w3,

w4 can be obtained accordingly and thus the solution of the problem is obtained, as represented by Eqs. (1),

(9) and (11). The parameters e and j control the oscillatory (or non-oscillatory) singularity behavior of the
generalized crack-tip stress field. The solution of this form has been used by many other researchers in their

investigation on piezoelectric materials as did by Boem and Atluri (1996) and Ma and Chen (2001).
3. Proof of the non-coexistence of e and j

It may seem to be straightforward to calculate the value of e and j from Eq. (16) for any anisotropic

piezoelectric bimaterial system. However, this is not the case for transversely isotropic piezoelectric

bimaterials. Why? It is all because for transversely isotropic piezoelectric bimaterials
kWk ¼ 0 and hence c ¼ 0; ð17Þ
as the authors shall prove in the following derivations.
For a transversely isotropic piezoelectric material, taking x3 to be parallel to the poling axis of the

material, by convention, the material�s constitutive relation is expressed in the following form:
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r33
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r31

r12

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

¼

c11 c12 c13 0 0 0
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0 0 0 0 0 c11�c12
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:
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3
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e11
e22
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8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

þ
v11 0 0

0 v11 0
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2
4

3
5 E1

E2

E3

8<
:

9=
;; ð19Þ
where Ei ¼ �/;i are the components of the electric field. Considering the generalized plane deformation,

with the poling direction parallel to x3 where all stress and displacement components depend on (x1, x3)
only, as shown in Fig. 1, the material matrices Q, R, and T can be written in the following way:
Q ¼

c11 0 0 0

0 c44 0 e15
0 0 c11�c12

2
0

0 e15 0 �v11

2
664

3
775; ð20Þ
R ¼

0 c13 0 e13
c44 0 0 0
0 0 0 0

e15 0 0 0

2
664

3
775; T ¼

c44 0 0 0

0 c33 0 e33
0 0 c44 0

0 e33 0 �v33

2
664

3
775: ð21Þ
The construction of these matrices conforms to the Stroh formalism as described in Section 2, but with x1
and x3 as the in-plane coordinate variables (x1 is the coordinate in the crack direction, and x3 is in the poling

direction) instead of x1 and x2. The material behavior is determined with the elastic properties as confined
Fig. 1. The interface crack in a piezoelectric bimaterial.
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by the matrices Q, R, and T, but not the choice of the coordinate system. Also, it should be pointed out in

this case there is no apparent decoupling between the in-plane problem and the anti-plane problem, as

oppose to the case when the poling axis is parallel to the crack front. Therefore, the following discussion

should be generally applicable to mix mode problems of an interfacial crack.
Substituting Eqs. (20) and (21) into Eq. (4), the characteristic equation becomes
c11 þ p2c44 pðc13 þ c44Þ 0 pðe13 þ e15Þ
pðc13 þ c44Þ c44 þ p2c33 0 e15 þ p2e33

0 0 c11�c12
2

þ p2c44 0

pðe13 þ e15Þ e15 þ p2e33 0 �v11 � p2v33

��������

��������
¼ 0: ð22Þ
The explicit expression of all the characteristic roots of Eq. (22) have been obtained by Ou and Chen (2003).

Here, we shall pay attention to one special characteristic root and its associated characteristic vector,

denoted by p3 and a3, as
p3 ¼ i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c11 � c12
2c44

r
; a3 ¼ 0 0 a33 0½ �T; ð23Þ
since the others do not matter in the present problem. It should be noted that for some piezoelectric

materials of class 3m, the characteristic root is not the same as the one expressed in Eq. (23), and therefore

the applicability of the present derivation is excluded for those materials.
Then, we can write the material matrices, A and B, according to Eqs. (6), (7) and (23), in the following

forms:
A ¼

� � 0 �
� � 0 �
0 0 a33 0

� � 0 �

2
664

3
775; B ¼

� � 0 �
� � 0 �
0 0 b33 0

� � 0 �

2
664

3
775; B�1 ¼

� � 0 �
� � 0 �
0 0 1=b33 0

� � 0 �

2
664

3
775; ð24Þ
where
b33 ¼ i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðc11 � c12Þ=2c44

p
� c44 � a33; ð25Þ
and ‘‘�’’ presents other arbitrary complex numbers that do not play an role in the subsequent derivation.

Substituting Eqs. (24) and (25) into the first formula in Eq. (8), it yields
Y ¼

� � 0 �
� � 0 �
0 0 i a33b33

0

� � 0 �

2
664

3
775 ¼

� � 0 �
� � 0 �
0 0

ffiffiffiffiffiffiffiffiffiffiffi
2c44

c11�c12

q
0

� � 0 �

2
664

3
775 ¼

� � 0 �
� � 0 �
0 0 a 0

� � 0 �

2
664

3
775: ð26Þ
Clearly, a is a real number when c11 � c12 6¼ 0, which is true for almost all transversely isotropic piezo-

electric materials in the practical use. Thus we obtained, from Eqs. (8), (13) and (26), the following result:
W ¼ ImH ¼ ImY1 þ ImY2 ¼
1

2i
½ðY1 � Y1Þ � ðY2 � Y2Þ� ¼

� � 0 �
� � 0 �
0 0 0 0

� � 0 �

2
664

3
775; ð27Þ
and thus the condition in Eq. (17) is proven to be satisfied for all transversely isotropic materials. This is

indeed the case for the many practical piezoelectric materials evaluated numerically as shown in the later
section.
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When the condition in Eq. (17) is true, Eq. (14) reduces to
Table

Materi

c11
c12
c13
c33
c44

e13
e33
e15

x11
x33

Table

Values

j

PZT

BaT

PZT

PZT

PZT
b4 þ 2bb2 ¼ 0 ð28Þ

and its roots can be found as
b1;2 ¼ 0; b3;4 ¼ �
ffiffiffiffiffiffiffiffiffi
�2b

p
¼ � 1ffiffiffi

2
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�tr½ðD�1W Þ2�

q
; ð29Þ
and hence
c1;2 ¼ 0; c3;4 ¼ � 1

p
tanh�1½

ffiffiffiffiffiffiffiffiffi
�2b

p
� ¼ � 1

p
tanh�1 1ffiffiffi

2
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�tr½ðD�1W Þ2�

q� �
: ð30Þ
It is thus shown that the two non-zero roots, c3; c4 are either real or imaginary numbers, depending on

the sign (positive or negative) of the parameter b, but there cannot be coexistence of real and imaginary

roots in the system. That is, if speaking with the terminology of Suo et al. (1992), the condition that either

e ¼ 0 or j ¼ 0 must be true for a given transversely isotropic piezoelectric bimaterial. Because the de-
generation of Eq. (14) to Eq. (28). It is more straightforward to obtain the eigenroots c from Eq. (30) for

transversely isotropic piezoelectric bimaterials than Eq. (16). In the latter case, care should be exercised

when
ffiffiffiffiffi
b2

p
is performed when c ¼ 0. Therefore, for transversely isotropic piezoelectric bimaterials, the

parameters e and j can be redefined as
e ¼ jReðc3;4Þj; j ¼ jImðc3;4Þj ð31Þ
Numerical evaluations were conducted for 15 piezoelectric bimaterial systems paired with six basic

transversely isotropic piezoelectric bimaterials: PZT-4, BaTiO3, PZT-5H, PZT-6B, PZT-7A, and PZT-7, in

different combinations. The material constants of these materials are listed in Table 1 (Park and Sun, 1995a;

Xiao et al., 2001; Wang, 1992; Dunn and Taya, 1994; Shindo et al., 2000). The values of e and j were

calculated using Eq. (30) and the results are given in Tables 2 and 3.
1

al constants for some piezoelectric ceramics

PZT-4 PZT-5H PZT-6B PZT-7A PZT-7 BaTiO3

1010 Nm�2 13.9 12.6 16.8 14.8 13.0 15.0

1010 Nm�2 7.78 5.50 6.00 7.62 8.30 6.60

1010 Nm�2 7.43 5.30 6.00 7.42 8.30 6.60

1010 Nm�2 11.3 11.7 16.3 13.1 11.9 14.6

1010 Nm�2 2.56 3.53 2.71 2.54 2.50 4.4

Cm�2 )6.98 )6.50 )0.90 )2.10 )10.3 )4.35
Cm�2 13.8 23.3 7.10 9.50 14.7 17.5

Cm�2 13.4 17.0 4.60 9.70 13.5 11.4

10�10 C (Vm)�1 60.0 151 36.0 81.1 171 98.7

10�10 C (Vm)�1 54.7 130 34.0 73.5 186 112

2

of j for some piezoelectric bimaterials

PZT-4 BaTiO3 PZT-5H PZT-6B PZT-7A P-7

-4 – 0.0508 0.0442 0.0168 0.0247 0.0367

iO3 – 0 0.0095 0.0206 0.0162

-5H – 0 0 0.0035

-6B – 0 0

-7A – 0.0023



Table 3

Values of e for some piezoelectric materials

e PZT-4 BaTiO3 PZT-5H PZT-6B PZT-7A P-7

PZT-4 – 0 0 0 0 0

BaTiO3 – 0.0130 0 0 0

PZT-5H – 0.0219 0.0069 0

PZT-6B – 0.0055 0.0121

PZT-7A – 0
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4. Discussion

Transversely isotropic piezoelectric bimaterial systems have wide applications in sensor and active

control technologies. They do exhibit various crack growth behaviors (Pak, 1990, 1992; Suo et al., 1992;

Sosa, 1991; Park and Sun, 1995a,b; Boem and Atluri, 1996; Deng and Meguid, 1998; McMeeking, 1999,

2001; Ma and Chen, 2001), which have not been completely understood. In this paper, this class of

piezoelectric materials, which is perhaps the class of the most practical significance, is studied as a special

case of the generalized anisotropic piezoelectric materials, particularly with detðWÞ ¼ 0. Because the
intrinsic properties of the material matrices, Q, R, and T, interestingly, some materials, e.g. PZT-4, when

paired with others to form a bimaterial system never exhibit an oscillatory character in the singular stress

field at the interfacial crack-tip, while the others do or do not, depending on with whom they pair. What

particular properties do cause the different behavior is an intriguing question, which is not easy to answer at

present. In the light of the above discussion, however, the piezoelectric bimaterial systems can be classified

into two groups: (A) with e ¼ 0 which can be called j-class piezoelectric bimaterials, and (B) with j ¼ 0

which called e-class piezoelectric bimaterials, as listed in Table 4. This classification is not just superficial,

since whether the singular stress field has an oscillatory component in the stress field at the crack-tip on the
interface does affect the energy release rate, and hence the behavior of crack extension under a far-field

mechanical–electrical load.

The present study proves that there always exist two eigenvalues having zero values in the problem of

Eq. (12) for transversely isotropic piezoelectric bimaterials. Then, the question is that are their eigenvectors

necessarily linearly independent. This means new solution needs to be sought for the problem, since the

general solution given by Suo et al. (1992) and Boem and Atluri (1996) is based on non-zero eigenvalues.

Currently, the authors are able to obtain linearly independent eigenvectors numerically for the selected

bimaterial systems (see Appendix A). However, proof of that exist in all cases is not as straightforward as
numerical evaluation. Therefore, it is suggested that researchers dealing with this class of piezoelectric

materials should carefully check the material matrices Q, R, and T and be aware of the condition in Eq. (17)

and seek special solution of the problem, Eq. (12), individually for the material system of their interest.

In numerical evaluations, the orthogonal properties of the material matrices A and B should be checked:

i.e., (Ting, 1986, 1990; Deng and Meguid, 1998)
Table

Classifi

Clas

j-C

e-Cl
ATBþ BTA ¼ I ¼ A
T
Bþ B

T
A; ATBþ BTA ¼ 0 ¼ B

T
Aþ A

T
B;

AAT þ AA
T ¼ 0 ¼ BBT þ BB

T
; BAT þ BA

T ¼ I ¼ ABT þ AB
T
;

ð32Þ
4

cation of transversely isotropic piezoelectric bimaterials

sification Crack-tip stress feature Piezoelectric bimaterials

lass Non-oscillating (e ¼ 0) PZT-4/BaTiO3, PZT-4/PZT-5H, PZT-4/PZT-6B, PZT-4/PZT-7A, PZT-4/P-7, BaTiO3/

PZT-6B, BaTiO3/PZT-7A, BaTiO3/P-7, PZT-5H/P-7, PZT-7A/P-7

ass Oscillating (j ¼ 0) BaTiO3/PZT-5H, PZT-5H/PZT-6B, PZT-5H/PZT-7A, PZT-6B/PZT-7A, PZT-5H/P-7
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as it has been done in our numerical evaluation. These properties are important to ensure the correct

solution. The numerical computation also shown that the values of e and j for transversely isotropic

piezoelectric bimaterials are invariant with the choice of the dimension system of the physical quantities

under consideration such as stress and electric field.

5. Conclusions

In summary, the following conclusions can be drawn from the present study.

(1) It is theoretically proven that the determinant of the imaginary part of the Hermitian matrix H vanishes

for all transversely isotropic piezoelectric bimaterials, leading to a degenerated characteristic equation,
Eq. (28), for the system. As a consequence, there always exist two zero eigenvalues for the problem with

a crack present at the bimaterial interface. The other two eigenvalues, being either real or imaginary,

should be evaluated from Eq. (30).

(2) If translated into Suo et al.�s terminology, the above point can be rephrased as that there is no coexis-

tence of e and j for any given transversely isotropic piezoelectric bimaterial system. This means that

such a material may or may not exhibit oscillatory singularity in the crack-tip stress and electrical dis-

placement fields at the interface, depending on the pair of the materials. This intriguing phenomenon is

due to the intrinsic material properties of the material matrices Q, R, and T.
(3) Numerical evaluations for 15 bimaterial systems consisting of commercially available piezoelectric ce-

ramics such as PZT-4, PZT-5H, PZT-6B, PZT-7A, P-7 and BaTiO3 have been performed and the re-

sults corroborates with the theoretical derivation.

(4) A classification is made for the transversely isotropic piezoelectric bimaterial systems, according to the

criteria of whether e ¼ 0, or j ¼ 0. Henceforth, their fracture behaviors should be examined carefully

with regards to the characteristics of the crack-tip fields in these bimaterial systems.

(5) On a numerical basis, linearly independent eigenvectors for the vanishing c can still be obtained, which

then complete the solution of Eq. (12). It can be seen that there always be four real linear independent
basic vectors w1, w2, w3, and w4 for the j-class piezoelectric bimaterials rather than those described by

Suo et al. (1992).
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Appendix A

Eigenvectors w ¼ ½w1;w2;w3;w4� for some piezoelectric bimaterials.

A.1. j-Class piezoelectric bimaterials

(1) PZT-4/BaTiO3:
j1 ¼ 0:0508; j2 ¼ �0:0508; e1 ¼ e2 ¼ 0;

w ¼

0:9138 0:9138 0 0

�0:0531 0:0531 0:9837 0

0 0 0 1

0:4027 �0:4027 0:1798 0

2
664

3
775;
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(2) PZT-4/PZT-5H:
j1 ¼ 0:0442; j2 ¼ �0:0442; e1 ¼ e2 ¼ 0;

w ¼

0:8535 0:8535 0 0

�0:3459 0:3459 0:9995 0

0 0 0 1
0:3896 �0:3896 0:0312 0

2
664

3
775;
(3) PZT-4/PZT-6B:
j1 ¼ 0:0168; j2 ¼ �0:0168; e1 ¼ e2 ¼ 0;

w ¼

0:7066 0:7066 0 0

0:5993 �0:5993 0:9455 0

0 0 0 1

0:3763 �0:3763 0:3256 0

2
664

3
775;
(4) PZT-4/PZT-7A:
j1 ¼ 0:0247; j2 ¼ �0:0247; e1 ¼ e2 ¼ 0;

w ¼

0:8940 0:8940 0 0

0:1296 �0:1296 0:9646 0

0 0 0 1

0:4288 �0:4288 0:2636 0

2
664

3
775;
(5) PZT-4/P-7:
j1 ¼ 0:0367; j2 ¼ �0:0367; e1 ¼ e2 ¼ 0;

w ¼

0:8748 0:8748 0 0

�0:1721 0:1721 0:9906 0

0 0 0 1
0:4528 �0:4528 0:1364 0

2
664

3
775;
(6) BaTiO3/PZT-6B:
j1 ¼ 0:0095; j2 ¼ �0:0095; e1 ¼ e2 ¼ 0;

w ¼

0:7279 0:7279 0 0

0:6385 �0:6385 0:9928 0

0 0 0 1

�0:2500 0:2500 �0:1196 0

2
664

3
775;
(7) BaTiO3/PZT-7A:
j1 ¼ 0:0206; j2 ¼ �0:0206; e1 ¼ e2 ¼ 0;

w ¼

0:9058 0:9058 0 0

0:1726 �0:1726 0:9978 0

0 0 0 1

�0:3869 0:3869 0:0665 0

2
664

3
775;
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(8) BaTiO3/P-7:
j1 ¼ 0:0162; j2 ¼ �0:0162; e1 ¼ e2 ¼ 0;

w ¼

0:8504 0:8504 0 0

�0:1070 0:1070 0:9587 0

0 0 0 1
�0:5152 0:5152 0:2844 0

2
664

3
775;
(9) PZT-5H/PZT-7:
j1 ¼ 0:0035; j2 ¼ �0:0035; e1 ¼ e2 ¼ 0;

w ¼

�0:3031 0:3031 0 0

0:8604 0:8604 0:9280 0

0 0 0 1

�0:4096 �0:4096 �0:3725 0

2
664

3
775;
(10) PZT-7A/P-7:
j1 ¼ 0:0023; j2 ¼ �0:0023; e1 ¼ e2 ¼ 0;

w ¼

�0:3020 0:3020 0 0

0:8810 0:8810 0:9426 0

0 0 0 1

�0:3632 �0:3632 �0:3340 0

2
664

3
775:
A.2. e-Class bimaterials

(1) BaTiO3/PZT-5H:
e1 ¼ 0:0130; e2 ¼ �0:0130; j1 ¼ j2 ¼ 0;

w ¼

�0:6480i 0:6480i 0 0

0:6944 0:6944 0:5683 0

0 0 0 1

0:3128 0:3128 0:8228 0

2
664

3
775;
(2) PZT-5H/PZT-6B:
e1 ¼ 0:0219; e2 ¼ �0:0219; j1 ¼ j2 ¼ 0;

w ¼

0:6832i �0:6832i 0 0

0:7300 0:7300 0:7743 0

0 0 0 1

�0:0203 �0:0203 �0:6328 0

2
664

3
775;
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(3) PZT-5H/PZT-7A:
e1 ¼ 0:0069; e2 ¼ �0:0069; j1 ¼ j2 ¼ 0;

w ¼

0:3569i �0:3569i 0 0

0:8956 0:8956 0:9350 0

0 0 0 1

�0:2654 �0:2654 �0:3548 0

2
664

3
775;
(4) PZT-6B/PZT-7A:
e1 ¼ 0:0055; e2 ¼ �0:0055; j1 ¼ j2 ¼ 0;

w ¼

�0:6561i 0:6561i 0 0

0:7316 0:7316 0:7861 0

0 0 0 1

0:1853 0:1853 0:6181 0

2
664

3
775;
(5) PZT-6B/P-7:
e1 ¼ 0:0121; e2 ¼ �0:0121; j1 ¼ j2 ¼ 0;

w ¼

0:7116 0:7116 0 0

0:7021i �0:7021i �0:4550 0

0 0 0 1

0:0236i �0:0236i 0:8905 0

2
664

3
775:
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